Start from this basic identity cos(3a)=4*cos^3(a) - 3*cos(a). Then 2*cos(3a) = 8*cos^3(a) - 6*cos(a), and we are given that 8*cos^3(a) - 6*cos(a) = cos(a). It implies= 0. So, either cos(a) = 0 or = 0; the last is equivalent to = . Case 1. If cos(a) = 0, then cos(2a) = = -1. Case 2. If = , then cos(2a) = = = = = . Answer. If 2*cos(3a) = cos(a), then EITHER cos(2a) = -1 OR cos(2a) = .