There are 4 solutions if you DON'T allow using zeros. Actually there really are only two pairs because one is just the other one switched: ABC + DEF = GHI ADG + BEH = CFI 146 + 583 = 729 157 + 482 = 639 ABC + DEF = GHI ADG + BEH = CFI 157 + 482 = 639 146 + 583 = 729 ----------------------------------- ABC + DEF = GHI ADG + BEH = CFI 718 + 236 = 954 729 + 135 = 864 ABC + DEF = GHI ADG + BEH = CFI 729 + 135 = 864 718 + 236 = 954 ----------------------------------- However, if you allow 0's for the second or third digits, there are two more pairs of solutions: ABC + DEF = GHI ADG + BEH = CFI 326 + 584 = 910 359 + 281 = 640 ABC + DEF = GHI ADG + BEH = CFI 359 + 281 = 640 326 + 584 = 910 ----------------------------------- ABC + DEF = GHI ADG + BEH = CFI 348 + 562 = 910 359 + 461 = 820 ABC + DEF = GHI ADG + BEH = CFI 359 + 461 = 820 348 + 562 = 910 ----------------------------------- Edwin