2. Suppose y=100-5x and z=x(y-1)
Δy/Δx=?
∂z/∂x=?
∂z/∂y=?
Δz/Δx=?
--------------------------------------
y = 100 - 5x
Substitute (y+Δy) for y and (x+Δx) for x
y+Δy = 100 - 5(x+Δx)
y + Δy = 100 - 5x + 5Δx
Δy = 100 - 5x + 5Δx - y
Now substitute (100-5x) for y
Δy = 100 - 5x + 5Δx - (100-5x)
Δy = 100 - 5x + 5Δx - 100 + 5x
Δy = -5Δx
Δy/Δx = -5Δx/Δx
Δy/Δx = -5
z = x(y - 1)
To find ∂z/∂x, we hold y constant, which means that
(y - 1) is a constant, and
∂z/∂x = y - 1
-----------------
z = x(y - 1)
To find ∂z/∂y, we hold x constant, which means that
x is a constant, and so
∂z/∂y = x
----------------------
z = x(y - 1)
Substitute (z+Δz) for z, (y+Δy) for y, and (x+Δx) for x
z+Δz = (x+Δx)[(y+Δy) - 1]
z + Δz = (x + Δx)(y + Δy - 1)
z + Δz = xy + xΔy - x + yΔx + ΔxΔy - Δx
Δz = xy + xΔy - x + yΔx + ΔxΔy - Δx - z
Substitute x(y - 1) for z
Δz = xy + xΔy - x + yΔx + ΔxΔy - Δx - x(y - 1)
Δz = xy + xΔy - x + yΔx + ΔxΔy - Δx - xy + x
Δz = xΔy + yΔx + ΔxΔy - Δx
Δz/Δx = xΔy/Δx + y + Δy - 1
Now substitute 100 - 5x for y, -5Δx for Δy, and -5 for Δy/Δx
Δz/Δx = x(-5) + (100 - 5x) + (-5Δx) - 1
Δz/Δx = -5x + 100 - 5x - 5Δx - 1
Δz/Δx = -10x + 99 - 5x - 5Δx
Edwin