SOLUTION: Solve for x; a, b & c are constants.
9x-b=c
Algebra.Com
Question 11029: Solve for x; a, b & c are constants.
9x-b=c
Answer by kateskute(1) (Show Source): You can put this solution on YOUR website!
to solve this problem you need to isolate the x. you would first do this by moving the b to the opposite side by adding it. so now you have 9x=b+c
now we have to divide both sides by 9 to get the x alone.
the answer is x= (b+c)/9
RELATED QUESTIONS
Solve for x, assuming a, b and c are negative constants.
(a) ax + b < c
(b) (ax... (answered by ikleyn)
Solve the inequality for x, assuming that a,b,and c are positive constants.
a < or =... (answered by Boreal)
If a, b, and c are positive constants, prove that {{{ax + b/x >= c}}} for all positive... (answered by robertb,Edwin McCravy)
. x + 3y − z = a
x + y + 2z = b
2y − 3z = c
solve the following systems,... (answered by josgarithmetic)
Solve the equation for the indicated variable. Assume all constants are non-zero.... (answered by macston)
How do you solve for x in this equation?
A=B^x, when A and B are... (answered by kietra)
Equation (x+2)(x+a)=x^2 + 4x+b where a and b are constants. If the equation is true for... (answered by ikleyn)
Find the constants A, B, and C for:
(3x+4)/((x-1)^2 * (x+2)) = A/(x-1) + B/(x-1)^2 +... (answered by josgarithmetic)
Given that a,b, and c are constants, a (answered by greenestamps)