SOLUTION: Show that the sum of three consecutive integers is always equal to 3 times the middle integer

Algebra.Com
Question 1058394: Show that the sum of three consecutive integers is always equal to 3 times the middle integer

Answer by Edwin McCravy(20054)   (Show Source): You can put this solution on YOUR website!
smallest integer = n
middle integer = n+1
largest integer = n+2

Their sum = n+(n+1)+(n+2) = n+n+1+n+2 = 3n+3 = 3(n+1)

3(n+1) is 3 times n+1, which is the middle integer.

So we have proved it.

Edwin

RELATED QUESTIONS

Find three consecutive odd integers such that four times the middle integer is equal to... (answered by solver91311,math-vortex)
Find three consecutive even integers such that four times the middle integer is equal to... (answered by Alan3354)
find three consecutive integers such that three times the middle integer is equal to the... (answered by ReadingBoosters)
Find three consecutive integers such that the sum of the smallest integer and the largest (answered by KMST)
Find three consecutive integers such that the sum of the smallest integer and the largest (answered by CubeyThePenguin)
Find three consecutive integers if twice the middle integer is equal to the sum of the... (answered by checkley71)
the sum of three consecutive integers is three times the second integer. Set up an... (answered by Alan3354)
Find three consecutive integers such that three times the largest increased by two is... (answered by mananth)
The sum of 3 consecutive odd integers is 12 less than 3 times the middle... (answered by josgarithmetic,MathTherapy)