SOLUTION: prove (cosx^3-sinx^3)/(cosx-sinx)=(cosx^2)/(sinx+cosx)

Algebra.Com
Question 1045197: prove (cosx^3-sinx^3)/(cosx-sinx)=(cosx^2)/(sinx+cosx)
Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
prove (cosx^3-sinx^3)/(cosx-sinx)=(cosx^2)/(sinx+cosx)
---------
I'll assume you mean cos^3(x), etc, not cos(x^3)
---
(cosx^3-sinx^3)/(cosx-sinx)=(cosx^2)/(sinx+cosx)
cos^2 + sin*cos + sin^2 = cos^2/(sin+cos)
1 + sin*cos = cos^2/(sin+cos)
=====================
At x = 45 degs:
1 + 1/2 =? (1/2)/sqrt(2)
Not an identity.

RELATED QUESTIONS

(sinx+cosx)(sinx+cosx) (answered by jim_thompson5910)
Sinx/cosx-cosx/sinx (answered by Alan3354)
3-cosx=3sin^2x... (answered by stanbon)
Cosx=-sinx (answered by Alan3354)
Cosx-sinx (answered by Alan3354,fractalier)
prove... (answered by Alan3354,stanbon)
((1/cosx)/sinx)-(cosx/sinx) (answered by Fombitz)
(sinx+cosx)^2+(sinx-cosx)^2=2 (answered by tommyt3rd)