SOLUTION: 46. Based on data from the U.S. Census Bureau, 8.4% of U.S. workers in 1992 earned over $100,000. In 2000, 13.4% of U.S. workers earned over $100,000.
a. Find a linear function t
Algebra.Com
Question 53330This question is from textbook Algebra 1
: 46. Based on data from the U.S. Census Bureau, 8.4% of U.S. workers in 1992 earned over $100,000. In 2000, 13.4% of U.S. workers earned over $100,000.
a. Find a linear function that gives the percent of workers earned in excess of $100,000 for a given year.
b. In 1998, there were approximately 104,000,000 workers in the U.S. According to your model, how many of these workers earned over $100,000?
This question is from textbook Algebra 1
Answer by stanbon(75887) (Show Source): You can put this solution on YOUR website!
Based on data from the U.S. Census Bureau, 8.4% of U.S. workers in 1992 earned over $100,000. In 2000, 13.4% of U.S. workers earned over $100,000.
a. Find a linear function that gives the percent of workers earned in excess of $100,000 for a given year.
The year is the independent variable; the percent is the dependent variable.
Percent= slope (year)+ b
You have two points: (92,8.4), (100,13.4)
m=[13.4-8.4]/[100-92]=5/8
Using the point (100,13.4) and m you can solve for b as follows:
13.4=(5/8)100+b
13.4= 62.5+b
b=-49.1
EQUATION:
Percent= (5/8)(year)-49.1
b. In 1998, there were approximately 104,000,000 workers in the U.S. According to your model, how many of these workers earned over $100,000?
1st find the percent using the equation from part "a".
Percent = (5/8)(98)-49.1
Percent = 12.51%
2nd: Find the number of workers using the percent.
12.51% (104,000,000)=12,636,000 workers earned over $100,000 in '98.
Cheers,
Stan H.
RELATED QUESTIONS
As part of the U.S. Census, the number of children is reported for each family in the... (answered by Boreal)
Translating research questions into hypotheses. Translate each of the following research... (answered by Boreal)
According to the U. S. Census Bureau, in 2003 approximately 27% of residents in the... (answered by ewatrrr)
Based on data from the U.S. Department of Agriculture, the average number of acres per... (answered by ikleyn)
According to the U. S. Census Bureau, the total 2008 U.S. population was 303,824,640.... (answered by Fombitz)
According to the U. S. Census Bureau, the total 2008 U.S. population was 303,824,640. The (answered by richard1234)
s^2 = t^-1 and t^1/4 = u^-1/3, then what is the value of s in terms of... (answered by ankor@dixie-net.com)
.The U.S census Bureau (Annual social and economic supplement) collects demographics... (answered by reviewermath)
The U.S. Department of Transportation maintains statistics for mishandled bags per 1,000... (answered by ewatrrr)