SOLUTION: find the 2 consecutive integers such that the square of the 2nd integer added to the 3 times the 1st is equal to 177
Algebra.Com
Question 437485: find the 2 consecutive integers such that the square of the 2nd integer added to the 3 times the 1st is equal to 177
Answer by eggsarecool(46) (Show Source): You can put this solution on YOUR website!
Ok so we have two consecutive integers
Lets call the first 1 a, and the second one a+1
Now the formula,
So we have the second one squared plus 3 times the first DISABLED_event_one= 177
now we need to solve for a, so we will expand the
giving us
collect like terms, and move the 177 to the left side.
you can factor this or if you are not comfortable with factoring you can use the quadratic formula
Now if we factor we get
which gives us ,
Now I am assuming they wanted the positive intergers, so you have a=11, and then a+1=12. So you integers are 11 and 12
RELATED QUESTIONS
find two consecutive positive integers such that the square of the smaller integer added (answered by oscargut)
find two consecutive positive integers such that the square of the second integer added... (answered by solver91311)
Find two consecutive positive integers such that the square of the second integer added... (answered by algebrapro18)
Find two consecutive positive integers such that the square of the second integer added... (answered by Boreal)
Find two consecutive positive integers such that the square of the second integer added... (answered by Alan3354,LinnW)
find two consecutive positive integers such that the square of the second integer added... (answered by Alan3354)
Consider two consecutive positive integers such that the square of the second integer... (answered by josgarithmetic)
I cannot figure out how to write the equation for this word problem.
"If the 1st and... (answered by josgarithmetic)
Two consecutive positive integers such that the square of the second integer added to 4... (answered by stanbon,ewatrrr)