# SOLUTION: I am trying to so;ve the following and I am lost. A small company produces both standard and deluxe playhouses. The standard playhouses take 12 hours of labor to produce, and t

Algebra ->  Algebra  -> Coordinate Systems and Linear Equations -> SOLUTION: I am trying to so;ve the following and I am lost. A small company produces both standard and deluxe playhouses. The standard playhouses take 12 hours of labor to produce, and t      Log On

 Ad: You enter your algebra equation or inequality - Algebrator solves it step-by-step while providing clear explanations. Free on-line demo . Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations! Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help!

 Linear Solvers Practice Answers archive Word Problems Lessons In depth

 Question 92519: I am trying to so;ve the following and I am lost. A small company produces both standard and deluxe playhouses. The standard playhouses take 12 hours of labor to produce, and the deluxe playhouses take 20 hours. The labor available is limited to 800 hours per week, and the total production capacity is 50 items per week. Existing orders require the company to produce at least 10 standard playhouses and 15 deluxe playhouses per week. Write a system of inequalities representing this situation, where x is the number of standard playhouses and y is the number of deluxe playhouses. Then graph the system of inequalities.Answer by ankor@dixie-net.com(15657)   (Show Source): You can put this solution on YOUR website!This same problem came up recently, here is what I submitted then, perhaps it will help you. : A small company produces both standard and deluxe playhouses. The standard playhouses take 12 hours of labor to produce, and the deluxe playhouses take 20 hours. The labor available is limited to 800 hours per week, and the total production capacity is 50 items per week. Existing orders require the company to produce at least 10 standard playhouses and 15 deluxe playhouses per week. Write a system of inequalities representing this situation, where x is the number of standard playhouses and y is the number of deluxe playhouses. Then graph the system of inequalities. : Let x = standard p.h; y = deluxe p.h : The labor equation: 12x + 20y =< 800 : put equation in the general (y=) form to plot the graph: 20y =< 800 - 12x y =< 800/20 - (12/20)x y =< 40 - .6x : : The production capacity equation: x + y =< 50 Put this in the "y=" form also y <= 50 -x : Existing order constraints x => 10 and y => 15 : Plot these using the equation givens. y = 40 - .6x; (purple line) y = 50 - x; (green line) y = 15; Note that y = 15 is a horizontal line going thru y = 15; black line x = 10 is a vertical line going thru x = 10, I am unable to put this in : I assume you know how to make up an x/y table and plot a graph, if you can't, let me known and we will go thru the graphing routine : Here is the graph: : When you draw your graph (or print this one) draw a vertical line thru x = 10 This will complete the area of feasibility which is: : 1.At or below, the purple line or the green line whichever is lower. 2.At or above the black horizontal line 3.At or to the right of the vertical line which you will add to the graph : Does this all make sense to you?