SOLUTION: the solution to this system of equations is (-2,1). Find the values for p and q. px+(9-q)y=-10 (3p+1)x-(q-6)y=-21

Algebra.Com
Question 658953: the solution to this system of equations is (-2,1). Find the values for p and q.
px+(9-q)y=-10
(3p+1)x-(q-6)y=-21

Answer by jim_thompson5910(35256)   (Show Source): You can put this solution on YOUR website!
Hint:

Replace every copy of x with -2. Then replace every copy of y with 1. This will give you

p(-2)+(9-q)(1)=-10
(3p+1)(-2)-(q-6)(1)=-21

You now have a system of equations with 2 variables p and q. Solve this new system just like you would solve the old system with variables x and y.

RELATED QUESTIONS

The solution to this system of equations is (-2,1). Find the values of p and q px +... (answered by ikleyn)
2. The solution to the system of equations below is (-2,1). Find the values of p and q. (answered by ikleyn)
The solution to this system of equations is (-2, 3). Find the values of p and q. [4]... (answered by Theo)
The point (-2,2) is a solution to the following linear system. Find the values for p and... (answered by ewatrrr)
3/(x+1) +4/(x-2)=(px+q)/(x+1)(x-2) What is the value of p and q? (answered by mananth)
find the values of p and q respectively if (x-2) and (x+1) are both factors of... (answered by josgarithmetic)
one of the root of the equation x^2-px+q=0 is the square of the other.proof that... (answered by Edwin McCravy)
Find the value of p and q if: (x-3) and (x+1) are factors of x^3+px+q Where (x-3) I (answered by MathLover1)
If p and q are the roots of x^2+PX+q=0. Find p and... (answered by josgarithmetic,ikleyn)