SOLUTION: A two-digit number is the same as the number with its digits reversed increased by three times the original number's unit's digit. If five times the sum of the digits is 70, find t

Algebra ->  Algebra  -> Coordinate Systems and Linear Equations -> SOLUTION: A two-digit number is the same as the number with its digits reversed increased by three times the original number's unit's digit. If five times the sum of the digits is 70, find t      Log On

 Ad: You enter your algebra equation or inequality - Algebrator solves it step-by-step while providing clear explanations. Free on-line demo . Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help! Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations!

 Linear Solvers Practice Answers archive Word Problems Lessons In depth

 Click here to see ALL problems on Linear-systems Question 253278: A two-digit number is the same as the number with its digits reversed increased by three times the original number's unit's digit. If five times the sum of the digits is 70, find the original number. (find a system of two equations then use the system to find the original number).Answer by checkley77(12569)   (Show Source): You can put this solution on YOUR website!10x+y=10y+x+3y 10x-x+y-10y-3y=0 9x-12y=0 multiply by -5 --------------- 5(x+y)=70 5x+5y=70 multiply by 9 & add --------------- -45x+60y=0 45x+45y=630 ----------- 105y=630 y=630/105 y=6 answer for the tens digit in the original number. 5(x+6)=70 5x+30=70 5x=70-30 5x=40 x=40/5 x=8 Proof: 10*8+6=10*6+8+3*6 80+6=60+8+18 86=86