x + 2y − z = −5
y − 3z = −13
x − 3y + 2z = 12
x + 2y − z = − 5 ----- eq (i)
y − 3z = − 13 ----- eq (ii)
x − 3y + 2z = 12 ----- eq (iii)
Looking at the equations it's clear that there're only 2 variables (y & z) in eq (ii),
It's also clear that x in eqs (i) & (iii) can be
eliminated by subtracting 1 equation from the other.
x + 2y − z = − 5 --- eq (i)
x − 3y + 2z = 12 --- eq (iii)
5y - 3z = - 17 --- Subtracting eq (iii) from eq (i) ----- eq (iv)
y − 3z = − 13 --- eq (ii)
5y - 15z = - 65 --- Multiplying eq (ii) by 5 ----- eq (v)
12z = 48 ----- Subtracting eq (v) from eq (iv)
y - 3(4) = - 13 ----- Substituting 4 for z in eq (ii)
y - 12 = - 13
y = - 13 + 12 = - 1
x + 2(- 1) - 4 = - 5 --- Substituting 4 for z and - 1 for y in eq (i)
x - 2 - 4 = - 5
x = - 5 + 6 = 1