SOLUTION: Solving linear systems with 3 variables 4x - 3y = 1 2y - 3z = 2 3x + 2z = 3

Algebra.Com
Question 1087439: Solving linear systems with 3 variables
4x - 3y = 1
2y - 3z = 2
3x + 2z = 3

Found 2 solutions by Fombitz, Edwin McCravy:
Answer by Fombitz(32388)   (Show Source): You can put this solution on YOUR website!


.
.
.


.
.
.


.
.
.


.
.
.
So,



Answer by Edwin McCravy(20056)   (Show Source): You can put this solution on YOUR website!


He did it my Cramer's rule (determinants). I didn't 
know if you'd had that or just the elimination method.
So I thought I'd do it by the first method that's
usually taught.


Line them up so that like letters, signs, 
and equal signs, and numbers line up
vertically.

4x - 3y      = 1
     2y - 3z = 2
3x      + 2z = 3

The idea is to reduce that to a linear system with
only 2 variables.

Notice that one of the variables has already been 
eliminated in all three.  Pick one of the three
to be one of the equations in the system of 2
equations with 2 variables.  It doesn't matter 
which of the three you pick.  Say we pick the 
third one, from which y has already been 
eliminated.

 3x + 2z = 3

Now even though a variable has been eliminated from
the other two, you still must eliminate the same
variable from the other two that is already eliminated 
in the one we picked, 3x + 2z = 3.  So we eliminate
y from the other two equations:


4x - 3y      = 1
     2y - 3z = 2
 
To eliminate y from them, we multiply the first
equation by 2 and the second one by 3, and then
add them:

8x - 6y      = 2
     6y - 9z = 6
----------------
8x      - 9z = 8 

So the linear system in 2 variables is

3x + 2z = 3
8x - 9z = 8

We can eliminate z by multiplying the first one just
above by 9 and the second one just above by 2
and adding:

27x + 18z = 27
16x - 18z = 16
--------------
43x       = 43
        x = 1

Substitute x = 1 in

  3x + 2z = 3
3(1) + 2z = 3
   3 + 2z = 3
       2z = 0
        z = 0

Substitute x = 1 in the first original 
equation:

  4x - 3y = 1
4(1) - 3y = 1
   4 - 3y = 1
      -3y = -3
        y = 1 

Answer (x,y,z) = (1,1,0)

Edwin


RELATED QUESTIONS

equation with 3 linear variables 2x-y+z=10 4x+2y-3z=10 x-3y+2z=8 wouldn't you... (answered by venugopalramana)
Linear Systems 2x+3y-z=1 x-y-z=2... (answered by AnlytcPhil)
I need help with system of equations with 3 variables. 1. Solve x + y = z -2x – 4y + z (answered by Alan3354)
x-3y+7z+w=11 2x+4y+6z-3w=-3 3x+2y+z+2w=19 4x+y-3z+w=22 Systems of linear equations (answered by Alan3354)
Linear Systems w+2x+3y-4z=-5 2w-x+y-2z=-7 3w-x-2y+z=7 4w-4x-2y+3z=3 (answered by AnlytcPhil)
Linear Systems: w+2x+3y-4z=-5 2w-x-y-2z=-7 3w-x-2y+z=7 4w-4x-2y+3z=3 w= x=... (answered by AnlytcPhil)
Solve the following systems of equations: 2x - 2y - 2z = -2 -x + y + 3z = 0 -3x +... (answered by stanbon)
1.Solve the linear equation : 2x+y-3z= 5,3 x-2y-2z= 5, and 5x-3y-z= 16. a.(1 , 3 ,... (answered by Vladdroid)
can you please help me with my problem. its about System of Linear Equations in three... (answered by longjonsilver)