SOLUTION: If set R consists of 5 letters and set S consists of 3 numbers, then how many elements are in the union of the two sets? OPTIONS: 0 2 3 5 8

Algebra.Com
Question 955751: If set R consists of 5 letters and set S consists of 3 numbers, then how many elements are in the union of the two sets?
OPTIONS:
0
2

3
5
8

Answer by Edwin McCravy(20056)   (Show Source): You can put this solution on YOUR website!
Since there are no elements in common, you just add the elements in
each set.  5+3=8

[If there had been any elements in common, if you added them
you'd be counting the common elkements twice so you'd have
to subtract that number from the sum, but in this case there
are no common elements, so you don't have to subtract anything
from the sum.  The answer is just 5+3=8]

Edwin

RELATED QUESTIONS

Use the formula for the cardinal number of the union of two sets to solve the problem: (answered by ikleyn)
If Set A has 9 letters and 3 numbers. Set B has 12 letters and 1 number. 9 letters and... (answered by Edwin McCravy)
I need help. There are 12 elements in the intersection of sets A and B, and there are 20... (answered by Theo)
Please help. There are 12 elements in the intersection of sets A and B, and there are 20... (answered by Fombitz)
hamlet is trying to guess the password for the homerina's email account. he knows that... (answered by checkley71)
set p consists of all the prime numbers among the first 100 positive integers. set e... (answered by ikleyn,math_tutor2020)
A code consists of 3 letters and then 3 digits. Any of the letters and numbers can be... (answered by stanbon)
The set A union B has 26 elements. Set A contains 15 elements, and set B contains 17... (answered by stanbon)
Set A consists of the numbers in the arithmetic sequence 15, 24, 33.... and Set B... (answered by Edwin McCravy)