Hello! I'm having trouble with this equation because I don't know how to solve for "k". Here is the equation. If 1+2i is a root of x^2-kx+6=0, find k. Can you help me out? Sincerely, Leanne Spence Substitute 1+2i for x and solve for k: x² - kx + 6 = 0 (1+2i)² - k(1+2i) + 6 = 0 (1+2i)(1+2i) - k - 2ik + 6 = 0 1 + 2i + 2i + 4i² - k - 2ik + 6 = 0 7 + 4i + 4i² - k - 2ik = 0 Since i² = -1 replace i² by -1 7 + 4i + 4(-1) - k - 2ik = 0 7 + 4i - 4 - k - 2ik = 0 3 + 4i - k - 2ik = 0 Get all the k terms on the right 3 + 4i = k + 2ik Factor k out on the right 3 + 4i = k(1 + 2i) Divide both sides by 1 + 2i 3 + 4i -------- = k 1 + 2i To divide out the two complex numbers, multiply top and bottom by conjugate of bottom, 1 - 2i (3 + 4i)(1 - 2i) ------------------ = k (1 + 2i)(1 - 2i) 3 - 6i + 4i - 8i² -------------------- = k 1 - 2i + 2i - 4i² 3 - 2i - 8i² -------------- = k 1 - 4i² Replace i² by -1 3 - 2i - 8(-1) ---------------- = k 1 - 4(-1) 3 - 2i + 8 ------------ = k 1 + 4 11 - 2i --------- = k 5 or in A + Bi form in fractions k = (11/5) - (2/5)i or in A + Bi form in decimals k = 2.2 - 0.4i Edwin