____________ (-3i2 + 4i - 5)Ö-9 - 4 + 5i3 Combine the -9 and the -4 under the radical _________ (-3i2 + 4i - 5)Ö-13 + 5i3 Since i2 = -1 and i3 = -i, replace those ___________ ( -3(-1) + 4i - 5 )Ö-13 + 5(-i) ________ ( 3 + 4i - 5)Ö-13 - 5i ________ ( -2 + 4i )Ö-13 - 5i Assume this equals to the complex number A + Bi, where A and B are real numbers ________ (-2 + 4i)Ö-13 - 5i = A + Bi Square both sides: ________ (-2 + 4i)2(Ö-13 - 5i)2 = (A + Bi)2 (4 - 16i + 16i2)(-13 - 5i) = A2 + 2ABi + B2i2 Replace the i2's by -1 ( 4 - 16i + 16(-1) )(-13 - 5i) = A2 + 2ABi + B2(-1) ( 4 - 16i - 16 )(-13 - 5i) = A2 + 2ABi - B2 (-12 - 16i)(-13 - 5i) = A² + 2ABi - B2 156 + 60i + 208i + 80i2 = A2 + 2ABi - B2 Replace the i2 by -1 156 + 60i + 208i + 80(-1) = A2 + 2ABi - B2 156 + 60i + 208i - 80 = A2 + 2ABi - B2 76 + 268i = A2 + 2ABi - B2 The real numbers on the left must equal the real numbers on the right, so 76 = A2 - B2 A2 - B2 = 76 The imaginary numbers on the left must equal the imaginary numbers on the right, so 268i = 2ABi Dividing thru by 2i 134 = AB AB = 134 So we have this system of equations: A2 - B2 = 76 AB = 134 To make things easier square the second equation A2B2 = 17956 Solve it for B2 B2 = 17956/A2 Substitute for B2 in the first equation A2 - 17956/A2 = 76 A4 - 17956 = 76A2 A4 - 76A2 - 17956 = 0 Solve that for A2 by the quadratic formula A2 = 177.2838828, A2 = -101.2838828 But since A is real A2 is positive so we discard the negative value A2 = 177.2838828 Taking square roots: A = ±13.31479939 Substitute 177.2839928 for A2 in A2 - B2 = 76 177.2838828 - B2 = 76 177.2838828 - 76 = B2 101.2838828 = B2 B2 = 101.2838828 Taking square roots: B = ± 10.06398941 So we get four solutions: A + Bi = 13.31479939 + 10.06398941i A + Bi = 13.31479939 - 10.06398941i A + Bi = -13.31479939 + 10.06398941i A + Bi = -13.31479939 - 10.06398941i However we can eliminate two of these because of the equation AB = 134 since 134 is a positive number, which means that A and B must have the same sign. This only leaves the two solutions: A + Bi = 13.31479939 + 10.06398941i A + Bi = -13.31479939 - 10.06398941i Both those are correct answers because there are two complex imaginary square roots of a complex imaginary number. The original problem contains a square root of a complex number, thus we expect two answers. Edwin