use z=a+bi and w=c+di to show that the conjugate of z*w = the conjugate of z * the conjugate of w First let's find z*w z*w = (a+bi)(c+di) = ac + adi + bci + bdi² = ac + (ad+bd)i + bd(-1) = ac + (ad+bd)i - bd = ac - bd + (ad+bd)i = (ac-bd) + (ad+bd)i ---------------------------------------------------- Now let's find the conjugate of z*w: "Find the conjugate" means "leave the real part but change the sign of the imaginary part". So the conjugate of z*w is (ac-bd) - (ad+bd)i ----------------------------------------------------- Now let's find the conjugates of z and w. Again, "find the conjugate" means "leave the real part but change the sign of the imaginary part". So the conjugate of z, which equals a+bi, is a-bi. And the conjugate of w, which equals c+di, is c-di. ------------------------------------------------------- Now let's find (the conjugate of z)*(the conjugate of w) (a-bi)(c-di) = ac - adi - bci + bdi² = ac - (ad+bd)i + bd(-1) = ac - (ad+bd)i - bd = ac - bd - (ad+bd)i = (ac-bd) - (ad+bd)i ------------------------------------------------------ So they are both equal since both the red expressions above are the same, namely (ac-bd) - (ad+bd)i. Edwin