Fractional exponents must be avoided in mathematics courses less advanced than complex analysis. In complex analysis there are "multi-valued functions". There are two square roots of, say, 4, +2 and -2. However, in math courses less advanced than complex analysis, we restrict the symbolto mean only the positive square root of 4, not -2. If we want the other square root, -2, we must write . That agreement was made so that the square root relation would be a function, passing the vertical line test. But imaginary (complex) numbers are neither positive nor negative, so no such agreement is possible. +i is neither a positive number nor a negative number. Likewise -i is neither a negative number nor a positive number. So and its equivalent expression actually is double valued and means both the values, but that is in the more advanced course complex analysis. Until we study the advanced mathematics course of complex analysis, we must avoid writing radicals or fraction exponents of negative or imaginary numbers. Therefore may not be written as in lower math courses because it involves a fractional exponent of an imaginary number. Edwin