SOLUTION: How to solve |3*e^(2x)-5*e^(x)|<2 ?
Algebra.Com
Question 499302: How to solve |3*e^(2x)-5*e^(x)|<2 ?
Answer by chessace(471) (Show Source): You can put this solution on YOUR website!
Not too easily.
First note that e^2x = (e^x)^2 and use y = e^x
Then have |3y^2 - 5y| < 2
Then break into the usual 2 cases for absolute value:
3y^2 - 5y < 2 and 3y^2 - 5y > -2
Then find zeroes after sending over the +-2:
3y^2 - 5y -2 = 0 and 3y^2 - 5y + 2 = 0
These factor into
(3y+1)(y-2)=0 and (3y-2)(y-1)=0
With roots
-1/3, 2 and 2/3, 1
By considering large (+ and -) values for y, it's clear that the function
f(y) = 3y^2 - 5y as y increases in value,
is > 2 until = 2 at y = -1/3
[then passes through the origin]
is = -2 at y = 2/3 and is < -2 until
[it reaches its minimum of - 2.833 at y = 5/6]
is = -2 again at y = 1,
and inceases to 2 at y = 2, then is > 2.
So the valid intervals for y are
(-1/3, 2/3) and (1, 2).
Now we need to relate this to x, where y = e^x.
So take natural logs of all 4 endpoints.
The -1/3 is artificial, e^x is never < 0.
Also e^0 = 1, so only need to look up 2 logs.
Final answer: x must belong to interval (-infinity, -0.405465) or
the interval (0 , 0.693147)
RELATED QUESTIONS
How to solve: e^2x =... (answered by Alan3354)
How do you solve ln x + ln x^2=5 to get e^2... (answered by htmentor)
Solve for x:
e^x = 5
e^e^x = 2
(e to the e to the... (answered by jim_thompson5910)
Solve, expressing answer in exact form.
[(e^x)^3 * (e^x)^2x] / e^5 =... (answered by joyofmath)
e^(x^2)-3=e^2x (answered by tommyt3rd)
Solve for x
e^2x-1=(e^-3x)^-2/e^2x The answer is -1/2.
I need to see how it is... (answered by ewatrrr)
how do you solve these equations
1) e^-x=5
2) 11^5x=33
3)... (answered by lwsshak3)
Solve e^2x =... (answered by fractalier)
e^(2x)-e^x=2, Solve for... (answered by stanbon)