SOLUTION: Find the VOLUME of the solid generated by revolving the region described about the indicated axis.
1. The region bounded by {{{ y = 3x - x^2 }}} and {{{ y = 0 }}} revolved about
Algebra.Com
Question 1025589: Find the VOLUME of the solid generated by revolving the region described about the indicated axis.
1. The region bounded by and revolved about the x-axis
2. The region bounded by , , and revolved about the line
3. The region bounded by and the x-axis revolved about the line
Answer by robertb(5830) (Show Source): You can put this solution on YOUR website!
1.
==> The antiderivative is
==> The volume is
2.
==> The antiderivative is
==> The volume is
I leave the last one to you.
RELATED QUESTIONS
Find the volume of the solid generated by revolving about the indicated axis the region... (answered by ikleyn)
compute the volume of the solid formed by revolving the region bounded by y=11-x, y=0 and (answered by Fombitz)
1. Sketch the graph of y=3e^2x ,x=0, x=2 and x-axis. Shade the region bounded by
the (answered by ikleyn,Alan3354)
If R is a region between the graphs of the function f(x)=sinx and g(x)=cosx over the... (answered by Alan3354,ikleyn)
Find the volume of the solid obtained by rotating the region bounded by y=8(x^2), x=1,... (answered by Fombitz)
The region bounded by y=x-1, x=3, y=1 and x-axis is revolved about y-xis, find the volume (answered by Alan3354)
Please help me solve this equation:
Let R be the region enclosed by {{{ y=-(x-1)^2+1 }}} (answered by solver91311)
Which of the following represents the volume of the solid formed by revolving the region... (answered by richard1234)
The region R in the first quadrant is bounded by y=6sin(πx/2), y=6(x-2)^2 and y=4x+2,... (answered by CPhill)