SOLUTION: Consider a vector v with direction angle θ=135° such that |v|=√2.
Find the x-component.
Thank you.
Algebra.Com
Question 984229: Consider a vector v with direction angle θ=135° such that |v|=√2.
Find the x-component.
Thank you.
Answer by jim_thompson5910(35256) (Show Source): You can put this solution on YOUR website!
x = (magnitude)*cos(angle)
x = |v|*cos(theta)
x = sqrt(2)*cos(135)
x = -1
RELATED QUESTIONS
Consider a vector v with direction angle θ=135° such that |v|=√2.
Find the... (answered by rothauserc)
Consider a vector v with direction angle θ=135° such that |v|=√2.
Find the... (answered by Fombitz,ikleyn)
Could someone please help me solve this vectors problem:
If vector v has a direction... (answered by Fombitz)
Find the component form of v given its magnitude and the angle it makes with the positive (answered by CPhill)
Ok i'm not so worried about the sketches I just want confirmation about mainly part c and (answered by venugopalramana)
Find the direction angle (θ) of the vector, v.
Round your answer to the nearest... (answered by math_helper)
The velocity vector v makes an angle of 150 degrees with the positive x-axis and is such... (answered by Edwin McCravy)
The vector V has a magnitude of 148.18 units and makes an angle of 45.29 degrees with the (answered by math_helper)
What's the component form of the vector {{{ V }}} with ||v|| = {{{ 12 }}}, in the same... (answered by Fombitz)