I think you'll find that it's easier to use the < p,q,r > notation in
vector calculus than the pi+qj+rk notation. Otherwise, you are likely
to get letters used for vectors and letters used for scalars confused.
Ordinary letters are used for scalars and letters in bold-face italics are used
for vectors. The < p,q,r > avoids having to use so many bold-face italic
letters.
given that a=2l+3j-k, b=l-j+2k, and c=3l+4j+k, find
(a) a+2b-c
a = < 2,3,-1 >, b = < 1,-1,2 >, c = < 3,4,1 >
a+2b-c = < 2,3,-1 > + 2< 1,-1,2 > - < 3,4,1 > =
< 2,3,-1 > + < 2,-2,4 > + < -3,-4,-1 > =
< 2+2-3,3-2-4,-1+4-1 > = < 1,-3,2 > = l-3j+2k
(b) a vector d such that a+b+c+d=0,
Let d = pl+qj+rk = < p,q,r >
a+b+c+d = < 2,3,-1 > + < 1,-1,2 > + < 3,4,1 > + < p,q,r > = 0 = < 0,0,0 >
< 2+1+3+p,3-1+4+q,-1+2+1+r > = < 0,0,0 >
< 6+p,6+q,2+r > = < 0,0,0 >
6+p=0; 6+q=0; 2+r=0
p=-6; q=-6; r=-2
d = pl+qj+rk = < p,q,r > = < -6,-6,-2 >
and (c) a vector d such that a-b+c+3d=0
Let d = pl+qj+rk = < p,q,r >
a-b+c+3d = < 2,3,-1 > - < 1,-1,2 > + < 3,4,1 > + 3< p,q,r > = 0 = < 0,0,0 >
= < 2,3,-1 > + < -1,1,-2 > + < 3,4,1 > + < 3p,3q,3r > = 0 = < 0,0,0 >
< 2-1+3+3p,3+1+4+3q,-1-2+1+3r > = < 0,0,0 >
< 4+3p,8+3q,-3+3r > = < 0,0,0 >
4+3p=0; 8+3q=0; -2+3r=0
3p=-4; 3q=-8; 3r=2
p=-4/3; q=-8/3; r=2/3
d = pl+qj+rk = < p,q,r > = < -4/3,-8/3,2/3 >
Edwin