cos(7q) +cos(5q) + cos(3q) + cos(q) = 4cos(q)cos(2q)cos(4q) The left is a sum and the right is a product. If we choose to work with the left side we will need a sum-to-product cosine identity. If we choose to work with the right side we will need a cosine product-to-sum identity. Since products are more complicated than sums, I will choose to work with the right side. We need to derive a cosine product-to-sum identity: Add the two well-known identities: cos(A+B) = cos(A)cos(B) - sin(A)sin(B) cos(A-B) = cos(A)cos(B) + sin(A)sin(B) ------------------------------------------------- cos(A+B)+cos(A-B) = 2cos(A)cos(B) Divide both sides by 2: [cos(A+B)+cos(A-B)]/2 = cos(A)cos(B) Turn it around: cos(A)cos(B) = [cos(A+B)+cos(A-B)]/2 This is the identity we will be using in addition to the fact that cos(-A) = cos(A) --------------------------------------------------- Start with the right side: 4cos(q)cos(2q)cos(4q) Use the identity to replace cos(q)cos(2q) by [cos(q+2q)+cos(q-2q)]/2 or [cos(3q)+cos(-q)]/2 or [cos(3q)+cos(q)]/2 4[[cos(3q)+cos(q)]/2]cos(4q) 2[cos(3q)+cos(q)]cos(4q) 2cos(3q)cos(4q)+2cos(q)cos(4q) Use the identity to replace cos(3q)cos(4q) by [cos(3q+4q)+cos(3q-4q)]/2 or [cos(7q)+cos(-q)]/2 or [cos(7q)+cos(q)]/2 Also use the identity to replace cos(q)cos(4q) by [cos(q+4q)+cos(q-4q)]/2 or [cos(5q)+cos(-3q)]/2 or [cos(5q)+cos(3q)]/2 2[cos(7q)+cos(q)]/2 + 2[cos(5q)+cos(3q)]/2 Cancel the 2's cos(7q)+cos(q)+cos(5q)+cos(3q) Swap the two middle terms: cos(7q)+cos(5q)+cos(q)+cos(3q) Swap the last two terms: cos(7q)+cos(5q)+cos(3q)+cos(q) Edwin