tan(θ) = cot(30°+5θ)
Since tan(θ) = cot(90°-θ)
and you only want one value of θ,
Replace tan(θ) by cot(90°-θ)
cot(90°-θ) = cot(30°+5θ)
90°-θ = 30°+5θ
60° = 6θ
10° = θ
[To get all the solutions, since tangent and cotangent
have period 180°, add n*180° to 90°-θ
cot(90°-θ+n*180°) = cot(30°+5θ)
90°-θ+n*180° = 30°+5θ
60°+n*180° = 6θ
10°+n*30° = θ where n is any integer, positive, negative or zero.
The solutions are given by this sequence:
..., -140°, -110°, -80°, -50°, -20°, 10°, 40°, 70°, 100°, 130°, 160°,...
Edwin