SOLUTION: Prove the identities: Sin^2x | Tan^2x/1+tan^2x Sin^4x+cos2x | Cos^4x Tan^2x+1/tan^2x| Csc^2x 2cosx + 2cos^2x/| Sinx/1-cosx Sin2x
Algebra
.Com
Question 889197
:
Prove the identities:
Sin^2x | Tan^2x/1+tan^2x
Sin^4x+cos2x | Cos^4x
Tan^2x+1/tan^2x| Csc^2x
2cosx + 2cos^2x/| Sinx/1-cosx
Sin2x
Answer by
Alan3354(69443)
(
Show Source
): You can
put this solution on YOUR website!
No equal signs --> not identities.
RELATED QUESTIONS
Show that each of the following is an identity 1+tan^2x / csc^2x = tan^2x...
(answered by
Alan3354
)
prove that...
(answered by
stanbon
)
(1-cos^2x)(1-tan^2x) = (sin^2x-2sin^4x) divided by...
(answered by
Alan3354
)
Please Prove the following identities 1.) Tan (x/2) = tan (x)/sec (x) + 1 2.)...
(answered by
lwsshak3
)
verify identities {{{Tan^2x-Sin^2x=(Sin^2x)(Tan^2x)}}}
(answered by
Edwin McCravy
)
Prove,...
(answered by
Alan3354
)
Prove the identity {{{matrix(1,3,(1-2Cos^2x)/(Sin(x)*Cos(x)),"=",...
(answered by
Edwin McCravy
)
tan^2x + cot^2x = 1 - 2sin^2x + 2sin^4x / sin^2x - sin^4x
(answered by
Alan3354
)
tan^2x/1+tan^2x
(answered by
Alan3354
)