sin(x)-3sin(2x)+sin(3x) = cos(x)-3cos(2x)+cos3x Write x as 2x-x and 3x as 2x+x sin(2x-x)-3sin(2x)+sin(2x+x) = cos(2x-x)-3cos(2x)+cos(2x+x) Left hand side's 1st and 3rd terms: sin(2x-x) = sin(2x)cos(x)-cos(2x)sin(x) sin(2x+x) = sin(2x)cos(x)+cos(2x)sin(x) So left hand side becomes 2sin(2x)cos(x) - 3sin(2x) Right hand side's 1st and 3rd terms: cos(2x-x) = cos(2x)cos(x)+sin(2x)sin(x) cos(2x+x) = cos(2x)cos(x)-sin(2x)sin(x) So right hand side becomes 2cos(2x)cos(x) - 3cos(2x) So the equation is now: 2sin(2x)cos(x) - 3sin(2x) = 2cos(2x)cos(x) - 3cos(2x) Factor out common factor: sin(2x)[2cos(x) - 3] = cos(2x)[2cos(x) - 3] sin(2x)[2cos(x) - 3] - cos(2x)[2cos(x) - 3] = 0 [2cos(x)-3][sin(2x)-cos(2x)] = 0 Use zero-factor property: 2cos(x)-3 = 0; sin(2x)-cos(2x) = 0 2cos(x) = 3 sin(2x) = cos(2x) cos(x) = 3/2= 1 (no solution to tan(2x) = 1 this part) 2x = 45° + 180°n x = 22.5° + 90°n or in radians: 2x = x = x = x = x = Edwin