Hi, there-- THE PROBLEM: Given that x = r sin A cos B y = r sin A sin B z = r cos A Verify x^2 + y^2 + z^2 = r^2. A SOLUTION: Substitute r sin A cos B for x, r sin A sin B for y, and r cos A for z in the equation. x^2 + y^2 + z^2 = r^2 (r sin A cos B)^2 + (r sin A sin B)^2 + (r cos A)^2 = r^2 Simplify left-hand side. r^2 (sin A)^2 (cos B)^2 +r^2 (sin A)^2 (sin B)^2 + r^2 (cos A)^2 = r^2 Factor r^2 from each term on the left-hand side. r^2 [ (sin A)^2 (cos B)^2 + (sin A)^2 (sin B)^2 + (cos A)^2 ] = r^2 Factor (sin A)^2 from first two terms inside the brackets. r^2 [(sin A)^2 [(cos B)^2 + (sin B)^2] + (cos A) ^2 ] = r^2 Simplify. (Recall that (cos B)^2 + (sin B)^2 = 1.) r^2 [(sin A)^2 + (cos A) ^2 ] = r^2 Simplify again using same identity. r^2 = r^2 VERIFIED! Hope this helps! Feel free to email if you have any questions. Mrs. Figgy math.in.the.vortex@gmail.com