SOLUTION: cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=?

Algebra.Com
Question 819982: cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=?
Answer by lwsshak3(11628)   (Show Source): You can put this solution on YOUR website!
cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=?
***
cos^2(-4pi/3)
cos(-4π/3)=-1/2
referenc angle in quadrant II where cos<0
cos^2(-4pi/3)=1/4
..
csc^2(9pi/8)
csc(9π/8)=1/sin(9π/8)
reference angle in quadrant III where csc<0
use sin half-angle formula
sin(9π/8)=sin((9π/4)/2
sin((9π/4)/2=√[(1-cos(9π/4))/2]=√[(1-(√2/2)/2)]=√[(2-√2)/4]
sin(9π/8)=√[(2-√2)/4]
csc(9π/8)=1/sin(9π/8)=1/√[(2-√2)/4]
csc^2(9π/8)=1/(2-√2)/4=4/(2-√2)≈6.83
calculator check:
csc^2(9pi/8)=(1/sin(9π/8))^2≈6.83..
..
cot^2(-15pi/8)
cot(-15π/8)=1/tan(-15π/8)
reference angle in quadrant II where cot<0
use tan half-angle formula
tan(-15π/8)=tan(-15π/4)/2=[sin(-15π/4)]/[1+cos(-15π/4)]=(√2/2)/(1+(√2/2))=√2/(2+√2)
cot(-15π/8)=1/tan(-15π/8)=(2+√2)/√2
cot^2(-15pi/8)=[(2+√2)/√2]^2=5.83
calculator check:
cot^2(-15π/8)=[1/tan(-15π/8)]^2≈5.83..
..
cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=(1/4)+(4/(2-√2))+(/(2+√2)≈.25+6.83+5.83≈12.91

RELATED QUESTIONS

Csc(9pi/8) (answered by Boreal)
What is CSC of... (answered by Edwin McCravy)
Sin=3/5 Cot=1 Sec=7/2 Cos=9/40 Tan=√3... (answered by ikleyn)
Verify Cos(theta) / (1+cos(theta)) + cos(theta)/(1-cos(theta)) = 2 cot(theta)... (answered by Edwin McCravy)
verify an identity: 1) tan(t)+ 2 cos(t)csc(t)=sec(t)+csc(t)+cot(t)... (answered by solver91311)
cot 60 degrees tan 210 degrees sec 210 csc 210 cot 210 cos 11pi/6 cot 3pi/2... (answered by venugopalramana)
Prove each of the following trigonometric identities. 1) sin x sin 2x + cox x cos 2x = (answered by MathLover1)
determine the specified trigonometric ratio for each special angle. 1. cos(11pi/6)... (answered by josmiceli,Theo)
sin(3x)/sin x= 2 cos(2x)+1 cot x/(csc x+1)= (csc x -1)/cot x (answered by Edwin McCravy)