sin(θ + 4°) = cos(θ + 6°) Use the cofunction identity cos(a) = sin{90°-a) sin(θ + 4°) = sin[90° - (θ + 6°)] sin(θ + 4°) = sin[90° - θ - 6°)] sin(θ + 4°) = sin(84° - θ) Then we use the fact that if sin(α) = sin(β) then one or both of these hold α = β + 360°n α = (180°-β) + 360°n for integer n Using the first one α = β + 360°n θ + 4° = 84° - θ + 360°n 2θ = 80° + 360°n θ = 40° + 180°n letting n=0 give θ = 40° letting n=1 give θ = 220° Using the second one α = 180° - β + 360°n θ + 4° = 180° - (84 - θ) + 360°n θ + 4° = 180° - 84° + θ + 360°n 4° = 96° + 360°n -92° = 360°n= n = n That is extraneous because n is an integer. So the only solutions between 0° and 360° are θ = 40° and θ = 220° and the general solution is θ = 40° + 180°n, for any integer n. Edwin