We will use the identities cos(2q) = 1-2sin²(q) sin(2q) = 2sin(q)cos(q) cos²(q) = 1-sin²(q) cos(4x) - 4cos(2x) + 3 1-2sin²(2x) - 4[1-2sin²(x)] + 3 1 - 2[2sin(x)cos(x)]² - 4 + 8sin²(x) + 3 The numbers combine to 0, so we have: -2[2sin(x)cos(x)]² + 8sin²(x) -2[4sin²(x)cos²(x)] + 8sin²(x) -8sin²(x)cos²(x) + 8sin²(x) -8sin²(x)[1-sin²(x)] + 8sin²(x) -8sin²(x)+8sin4(x) + 8sin²(x) 8sin4(x) Edwin