9tan(2x) − 18cos(x) = 0 Divide through by 9 tan(2x) − 2cos(x) = 0- 2cos(x) = 0 - 2cos(x) = 0 Divide through by 2 - cos(x) = 0 Multiply through by LCD of 1 - 2sin˛(x) sin(x)cos(x) - cos(x)(1 - 2sin˛(x)) = 0 Factor out cos(x) cos(x)[sin(x) - (1 - 2sin˛(x)] = 0 cos(x)[sin(x) - 1 + 2sin˛(x)} = 0 Use the zero-factor property: cos(x) = 0; sin(x) - 1 + 2sin˛(x) = 0 x = , ; 2sin˛(x) + sin(x) - 1 = 0 [2sin(x) - 1][sin(x) + 1] = 0 2sin(x) - 1 = 0 sin(x) + 1 = 0 2sin(x) = 1 sin(x) = -1 sin(x) = x = x = , There are 4 solutions in [0, 2π). , , , and Edwin