SOLUTION: find the phase shift of the trigonometric function y=5 cos(θ/2-π/6)+7

Algebra.Com
Question 746253: find the phase shift of the trigonometric function y=5 cos(θ/2-π/6)+7
Answer by lwsshak3(11628)   (Show Source): You can put this solution on YOUR website!
find the phase shift of the trigonometric function y=5 cos(θ/2-π/6)+7
equation for cos function: y=Acos(Bx-C), a=amplitude, period=2π/B, phase shift=C/B
For given cos function:
B=1/2
C=π/6
phase shift=C/B=(π/6)/(1/2)=π/3 (shift to the right)

RELATED QUESTIONS

Find the period, amplitude, and phase shift of the function y=... (answered by josmiceli)
State the phase shift of y= cos(θ-pie/3) Then graph the... (answered by stanbon)
determine the amplitude and period and phase shift of each function. Then graph one... (answered by Alan3354)
Find the values of the trigonometric functions of θ of cot θ = 1/2, sin θ... (answered by ewatrrr)
Find the amplitude, period, phase shift and graph of the function y = 8 cos (3/4x... (answered by Alan3354)
Any and all help with this problem is GREATLY appreciated!! I think maybe the phase shift (answered by jim_thompson5910)
Write an equation of the sine function with: amplitude = 7 period = 3π phase... (answered by stanbon)
Use the information given about the angle θ, 0 ≤ θ ≤ 2π, to... (answered by lwsshak3)
What is the vertical shift, amplitude, period, and phase shift of this function? y = 3 (answered by Alan3354)