SOLUTION: using trigonometric fundamental identities prove that sina/(1+cosa)+(1+cosa)/sina=2csca

Algebra.Com
Question 697819: using trigonometric fundamental identities prove that sina/(1+cosa)+(1+cosa)/sina=2csca
Answer by lwsshak3(11628)   (Show Source): You can put this solution on YOUR website!
using trigonometric fundamental identities prove that sina/(1+cosa)+(1+cosa)/sina=2csca
**
sin/(1+cos)+(1+cos)/sin=2csc
start with left side:
sin/(1+cos)+(1+cos)/sin
sin^2+(1+cos)^2)/sin(1+cos)
(sin^2+1+2cos+cos^2)/sin(1+cos)
(1+1+2cos)/sin(1+cos)
(2+2cos)/sin(1+cos)
2(1+cos)/sin(1+cos)
2/sin
2csc
verified: left side=right side

RELATED QUESTIONS

prove the trigonometrical identities.... (answered by greenestamps)
PROVE THAT sinA/1+cosA +... (answered by AAfter Search)
Prove that: ((cos2A)/(cosA+sinA)^3) =... (answered by Cromlix)
Prove... (answered by Alan3354)
Please prove: ((cos2A)/(cosA+sinA)^3) =... (answered by Cromlix)
SinA+1-cosA/cosA-1+sinA=1+sinA/cosA (answered by anand429)
(SinA/1+cosA) +... (answered by amarjeeth123)
√1+cosA/√1-CosA=sinA/1-cosA (answered by amarjeeth123)
if CosA+SinA=1, show that CosA-SinA=±1 (answered by Edwin McCravy)