SOLUTION: (tanx)/(cscx-cotx)-(sinx)/(cscx+cotx)=secx+cosx
Algebra.Com
Question 685442: (tanx)/(cscx-cotx)-(sinx)/(cscx+cotx)=secx+cosx
Answer by mananth(16946) (Show Source): You can put this solution on YOUR website!
LCD = (cscx-cotx)(cscx+cotx)
((tanx*cscx+tanx*cotx)-(sinx*cscx-sinx.cotx))/(csc^2x-cot^2x)
((1/cosx)+1)-(1-cosx))/1
(1/cosx)+1-1+cosx)
(1/cosx)+cosx
= secx + cosx
RELATED QUESTIONS
Solve: (secx+cscx)/(tanx+cotx)
(answered by lwsshak3)
1+cscx/secx=cosx+cotx (answered by Alan3354)
verifying trigonometric identities.... (answered by Alan3354)
sinx= 4/5 x is in quadrant II
cosx=
tanx=
cotx=
secx=... (answered by Theo)
Prove Identities: cscx + cotx/tanx + sinx = cotx... (answered by Alan3354)
if cos^-1(-2/7)=x, find the exact value for each: sinx,cosx, tanx, cotx, secx,&... (answered by lwsshak3)
find all the remaining trigonometric functions x if:
cosx = 3/5 and tanx = -4/3... (answered by stanbon)
how to prove cscx-sinx=cosx... (answered by drk)
Prove.... (answered by Boreal)