sin x=4/5 and   pi/4 < x < pi/2  ,
Find sin(4x)
Use the identity sin(2@) = 2sin(@)·cos(@) where @ = 2x
sin(4x) = sin[2(2x)] 
sin(4x) = 2sin(2x)·cos(2x)
Use that identity again with @=x to replace sin(2x).  Use
the identity cos(2@) = cosē(@)-sinē(@) to replace cos(2x)
sin(4x) = 2[2sin(x)·cos(x)][cosē(x)-sinē(x)]
sin(4x) = 4sin(x)·cos(x)[cosē(x)-sinē(x)] 
We have sin(x) =  but we don't have cos(x).  We use the identity
sinē(@)+cosē(@)=1 by solving it for cos(@)
        cosē(@)=1-sinē(@)
        cosē(x)=1-()ē = 1- =  = 
         cos(x)=
         cos(x)=
Sinve we are given that  < x < , we know that
the cosine is positive, therefore
         cos(x)=
sin(4x) = 4sin(x)·cos(x)[cosē(x)-sinē(x)]
sin(4x) = 4()·[-]
sin(4x) = [-]
sin(4x) = []
sin(4x) = 
Edwin