We write the sum of all fractions with a denominator which is a divisor of the denominator:= + + Clear of fractions: 4x² + 2x - 1 = Ax(x+1) + B(x+1) + Cx² Substitute x=-1 to make the (x+1)'s 0 4(-1)² + 2(-1) - 1 = A(-1)(-1+1) + B(-1+1) + C(-1)² 4(1) - 2 - 1 = A(-1)(0) + B(0) + C(1) 4 - 2 - 1 = 0 + 0 + C 1 = C Substitute x=0 to make the 1st and 3rd terms on the right 0: 4x² + 2x - 1 = Ax(x+1) + B(x+1) + Cx² 4(0)² + 2(0) - 1 = A(0)(0+1) + B(0+1) + C(0) 0 + 0 - 1 = A(0)(1) + B(1) + 0 -1 = 0 + B -1 = B Substitute B = -1 and C = 1 4x² + 2x - 1 = Ax(x+1) + (-1)(x+1) + (1)x² 4x² + 2x - 1 = Ax(x+1) - (x+1) + x² Substitute x=1 (Note: we could use ANY number here that we haven't used): 4(1)² + 2(1) - 1 = A(1)(1+1) - (1+1) + 1² 4 + 2 - 1 = 2A - 2 + 1 5 = 2A - 1 6 = 2A 3 = A So A = 3, B = -1, C = 1 Answer: = - + Edwin