This is one tough identity! It requires very unusual substitutions, additions and subtractions of the same quantities. 2sin(x+y)sin(x-y) = cos(2y)-cos(2x) = cos(y+y) - cos(x+x) = cos(y+y+x-x) - cos(x+x+y-y) = cos[(x+y)-(x-y)] - cos[(x+y)+(x-y)] Use the identities cos(A∓B)=cos(A)cos(B)±sin(A)sin(B) with A=(x+y), B=(x-y) = [cos(x+y)cos(x-y)+sin(x+y)sin(x-y)] - [cos(x+y)cos(x-y)-sin(x+y)sin(x-y)] = cos(x+y)cos(x-y) + sin(x+y)sin(x-y) - cos(x+y)cos(x-y) + sin(x+y)sin(x-y) =cos(x+y)cos(x-y)+ sin(x+y)sin(x-y) -cos(x+y)cos(x-y)+ sin(x+y)sin(x-y) = 2sin(x+y)(sin(x-y) Edwin