sin[(n+1)A]sin[(n+2)A] + cos[(n+1)A]cos[(n+2)A] = cosA Use the commutative principles of multiplication and addition to rearrange the left side as cos[(n+2)A]cos[(n+1)A] + sin[(n+2)A]sin[(n+1)A] The left side is the right side of the identitywith and So the left side becomes: cos[(n+2)A - (n+1)A] cos[nA + 2A - nA - A] cos(A) Edwin