cos-1(x) + cos-1(2x) = 60°
Let = cos-1(x)
Let = cos-1(2x)
Then cos() = x
and cos() = 2x
So the equation
cos-1(x) + cos-1(2x) = 60°
becomes
+ = 60°
Take the cosine of both sides:
cos(+) = cos(60°)
Using an identity for cos(+),
cos()cos() - sin()sin() =
Then since cos() = x and cos() = 2x
x(2x) - sin()sin() =
2x² - sin()sin() =
Now we have to find the sines. We use the identity:
sin² + cos² = 1
sin² = 1 - cos²
___________
sin = ±Ö1 - cos²
The sign of the sine depends on what quadrants and are in. We consider all cases
___________ ______
sin(a) = ±Ö1 - cos²(a) = ±Ö1 - x²
___________ __________ _________
sin(b) = ±Ö1 - cos²(b} = ±Ö1 - (2x)² = ±Ö1 - 4x²
Substituting in
2x² - sin()sin() =
______ _______
2x² ± Ö1 - x²·Ö1 - 4x² =
_________________
2x² ± Ö(1 - x²)(1 - 4x²) =
Multiply both sides by 2 to clear of the fraction:
_________________
4x² ± 2Ö(1 - x²)(1 - 4x²) = 1
Isolate the radical term:
___________________
±2Ö(1 - x²)(1 - 4x²) = 1 - 4x²
Square both sides:
4(1 - x²)(1 - 4x²) = (1 - 4x²)²
4(1 - 5x² + 4x4) = 1 - 8x² + 16x4
4 - 20x² + 16x4 = 1 - 8x² + 16x4
-12x² = -3
x² =
x² =
x = ±
We must check for extraneous solutions:
Checking :
cos-1(x) + cos-1(2x) = 60°
cos-1() + cos-1(2·) = 60°
60° + cos-1(1) = 60°
60° + 0° = 60°
60° = 60°
That checks, so is a solution.
Checking :
cos-1(x) + cos-1(2x) = 60°
cos-1() + cos-1(2·) = 60°
120° + cos-1(-1) = 60°
120° + 180° = 60°
300° = 60°
That's false, so the only solution is
x =
Edwin