It comes from the fact that sin(np) = 0 and cos(0p) = 1, cos(1p) = -1, cos(2p) = 1, cos(3p) = -1, cos(4p) = 1, etc. cos([even number]·p) = 1, cos([odd number]·p) = -1 and (-1)(even number) = 1, (-1)(odd number) = -1 therefore, since even and odd numbers alternate, we have cos(np) = (-1)n --------------------------------------------- Therefore, sin(np + q) = sin(np)cos(q) + cos(np)sin(q) = 0·cos(q) + (-1)nsin(q) = (-1)nsin(q) Edwin
__ _ 3Öa5Öa...(answered by AnlytcPhil)