Hi
cosēθ(tanēθ+1)=1 | (tanēθ+1)= secθē = 1/cosēθ
cosēθ/cosēθ = 1
1 = 1
secēθ cotē=1+cotēθ
secēθcotē- cotēθ = 1
cotēθ(secēθ - 1) = 1 | secēθ - 1 = tanēθ
cotēθtanēθ = 1 | tanēθ = 1/cotēθ
cotēθ/cotēθ = 1
1 = 1
Sinθ/(1+cos θ) = cscθ-cot θ |cscθ = 1/sinθ and cotθ = cosθ/sinθ
Sinθ/(1+cos θ) = (1-cosθ)/sinθ
sinēθ = (1+cos θ)(1-cos θ)
sinēθ = 1 - cosēθ
sinēθ + cosēθ = 1 |pythagorean Identity