By the law of sines, Let those three fractions equal to a constant k, Then we have VW = k*sin(U), UW = k*sin(V), UV = k*sin(W) Draw altitude WX VX = VW*cos(V) = k*sin(U)cos(V) UX = UW*cos(U) = k*sin(V)cos(U) UV = VX + UX = k*sin(U)cos(V) + k*sin(V)cos(U) UV = k*sin(W) k*sin(W) = k*sin(U)cos(V) + k*sin(V)cos(U) sin(W) = sin(U)cos(V) + sin(V)cos(U) W = 180° - (U+V) sin[180°-(U+V)] = sin(U)cos(V) + sin(V)cos(U) and since the sine of the supplement of an angle equals the sine of the angle, sin(U+V) = sin(U)cos(V) + sin(V)cos(U) switch the factors in the last term sin(U+V) = sin(U)cos(V) + cos(U)sin(V) Edwin