SOLUTION: tan^2x-cot^2x=sec^2x-csc^2x

Algebra ->  Trigonometry-basics -> SOLUTION: tan^2x-cot^2x=sec^2x-csc^2x      Log On


   



Question 148631: tan^2x-cot^2x=sec^2x-csc^2x
Answer by jojo14344(1513) About Me  (Show Source):
You can put this solution on YOUR website!
Trigo Identities.
We should know that 1+(tan^2x)=sec^2x also 1+(cot^2x)=csc^2x
Substituting these identities to the eqn (tan^2x)-(cot^2x)=(sec^2x)-(csc^2x)
%28sec%5E2x%29-1-%28csc%5E2-1%29=%28sec%5E2x%29-%28csc%5E2x%29
sec%5E2x-cross%281%29-csc%5E2x%2Bcross%281%29=sec%5E2x-csc%5E2x
sec%5E2x-csc%5E2x=sec%5E2x-csc%5E2x ----------> Identical
Thank you,
Jojo