SOLUTION: tan^2x-cot^2x=sec^2x-csc^2x
Algebra
->
Trigonometry-basics
-> SOLUTION: tan^2x-cot^2x=sec^2x-csc^2x
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 148631
:
tan^2x-cot^2x=sec^2x-csc^2x
Answer by
jojo14344(1513)
(
Show Source
):
You can
put this solution on YOUR website!
Trigo Identities.
We should know that 1+(tan^2x)=sec^2x also 1+(cot^2x)=csc^2x
Substituting these identities to the eqn (tan^2x)-(cot^2x)=(sec^2x)-(csc^2x)
----------> Identical
Thank you,
Jojo