4 sin(2x) = 4 cos(x) implies, by canceling common factor "4" in both sides sin(2x) = cos(x), 2sin(x)*cos(x) = cos(x) 2sin(x)*cos(x) - cos(x) = 0 cos(x)*(2sin(x) - 1) = 0 So, EITHER cos(x) = 0, OR sin(x) = 1/2. If cos(x) = 0, then x=or x= . If sin(x) = 1/2, then x= or x= - = . So, the solution to the given equation are , , , . ANSWER