SOLUTION: Whats is ( (SQRT3) + i ) ^ 9
or in other words the quantity of the square root of three plus "i" to the power of nine in a + bi form
Algebra ->
Trigonometry-basics
-> SOLUTION: Whats is ( (SQRT3) + i ) ^ 9
or in other words the quantity of the square root of three plus "i" to the power of nine in a + bi form
Log On
Question 117942: Whats is ( (SQRT3) + i ) ^ 9
or in other words the quantity of the square root of three plus "i" to the power of nine in a + bi form Found 2 solutions by stanbon, jim_thompson5910:Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! What's ( (SQRT3) + i ) ^ 9
------------
Convert to trig form:
r = sqrt((sqrt3)^2+1^2) = 2
theta = tan^-1(1/sqrt3)= 30 degrees
------------
[2cis(30)]^9 = (2^9)cis(270)
------------
Convert back to complex form:
= 512(cos(270)+isin(270)
=512(0 + i (-1))
= -512i
==============
Cheers,
Stan H.