SOLUTION: Three numbers are in an arithmetic progression with a common difference of 6. If 4 is subtracted from the first number, 1 is subtracted from the second number, and the third number

Algebra.Com
Question 1151136: Three numbers are in an arithmetic progression with a common difference of 6. If 4 is subtracted from the first number, 1 is subtracted from the second number, and the third number is first decreased by 3 and then multiplied by 3, then the resulting three numbers form a geometric progression. Find the original three numbers.
Answer by greenestamps(13198)   (Show Source): You can put this solution on YOUR website!


Let the original three numbers be x-6, x, and x+6.

Then (x-6)-4 = x-10, x-1, and 3((x+6)-3) = 3x+9 form a geometric progression, which means there is a common ratio between the terms.






or

Both solutions satisfy the conditions of the problem.

(A) x = -7/2:

The original arithmetic progression is

-19/2, -7/2, 5/2

When 4 is subtracted from the first term, 1 is subtracted from the second term, and the third term is decreased by 3 and then multiplied by 3, the resulting numbers form a geometric progression:

-27/2, -9/2, -3/2

(B) x = 13:

The original arithmetic progression is

7, 13, 19

When 4 is subtracted from the first term, 1 is subtracted from the second term, and the third term is decreased by 3 and then multiplied by 3, the resulting numbers form a geometric progression:

3, 12, 48


RELATED QUESTIONS

Three numbers form a geometric progression. If 4 is subtracted from the third term, then... (answered by greenestamps)
Three positive numbers form an arithmetic progression; their sum is 18. If the first... (answered by ikleyn)
The 2nd, 4th and 8th terms of an arithmetic progression are the three consecutive terms... (answered by mananth)
A geometric progression has 6 terms. The first term is 192 and the common ratio is 1.5.... (answered by greenestamps)
three angels of a triangle are in arithmetic progression with a common difference of 20... (answered by ikleyn)
The sum of the first 100 terms of an arithmetic progression is 10000; the first, second... (answered by mananth)
The first and last term if an AP are -0.5 and 140.5, respectively. (Q1) If the number... (answered by ikleyn)
A geometric progression has six terms. The first term is 486 and the common ratio is ;.... (answered by greenestamps)
The first term of an arithmetic progression is 12 and the sum of the first 16 terms is... (answered by greenestamps)