SOLUTION: Solve the following equations in the interval [0,2π]. If tan(t)=1, If tan(t)=-1

Algebra.Com
Question 1134963: Solve the following equations in the interval [0,2π].
If tan(t)=1, If tan(t)=-1

Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
Solve the following equations in the interval [0,2π].
tan(t)=1
---
Tangent is positive in Q1 and Q3
=======
If tan(t)=-1
Tangent is negative in Q2 & Q4.
===============
If you don't know where tan = 1 or -1, you can use a calculator.
You need to know that, tho.

RELATED QUESTIONS

Solve the equations below exactly. Give your answers in radians, and find all possible... (answered by ikleyn)
Solve the following equation in the interval [0,2π].Give answer as a multiple of π.... (answered by ikleyn,ewatrrr)
Solve the following equations in the interval [0, 2pi]. Give the answer as a multiple... (answered by lwsshak3)
Solve the equations below exactly. Give your answers in radians, and find all possible... (answered by Fombitz)
Find all t in the interval [0, 2π] satisfying tan t - 3cot t =... (answered by Fombitz)
Solve the following equations in the interval [0, 2pi]. 1) cos(t)= (1/2) t= 2)... (answered by ewatrrr)
solve the equation (tan t) (tan 2t)=1 for t t element... (answered by lwsshak3)
If sec(t) - tan(t) = (1)/(f(t) + tan(t)) then f(t) equals (answered by greenestamps)
Solve the following trigonometric equations such that 0<=x<=2pi √3=(tan... (answered by stanbon)