(cos˛x + sin˛x)/(cot˛x - cosec˛x) (cos˛x + sin˛x) ÷ (cot˛x - cosec˛x) Use the identity cos˛q + sin˛q = 1 1 ÷ (cot˛x - cosec˛x) Use the identities cotq = cosq/sinq and cosecq = 1/sinq 1 ÷ (cos˛x/sin˛x - 1/sin˛x) 1 ÷ (cos˛x - 1)/sin˛x Use the identity again cos˛q + sin˛q = 1, solved for cos˛q cos˛q = 1 - sin˛q 1 ÷ (1 - sin˛x - 1)/sin˛x 1 ÷ -sin˛x/sin˛x 1 ÷ -1 -1 Edwin