SOLUTION: trying to help son and need starting point problem is: (cscx + cotx) (cscx-cotx) = 1 just a formula setup would be great.

Algebra.Com
Question 1019681: trying to help son and need starting point problem is:
(cscx + cotx) (cscx-cotx) = 1
just a formula setup would be great.

Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
(cscx + cotx) (cscx-cotx) = 1
-------
csc^2 - cot^2 = 1
That's an identity.
---
If it's not recognized:
Multiply by sin^2
1 - cos^2 = sin^2
cos^2 + sin^2 = 1 - Pythagorean Identity

RELATED QUESTIONS

(1+cosx)(cscx-cotx) (answered by stanbon)
pls. help me solve this problem. cotx/cscx +... (answered by stanbon)
Simplify:... (answered by Edwin McCravy)
Please help me verify this trig problem: (cotx/csc-1)=... (answered by Alan3354)
simplify (cscx - cotx)(secx +... (answered by josgarithmetic)
1+cscx/secx=cosx+cotx (answered by Alan3354)
Please help me solve this: Verify the following... (answered by Alan3354)
Hi, I need to rewrite this expression in terms of tanx: cscx/cotx - cotx/1+cscx So far... (answered by Alan3354)
This needs to be added and simplified. sinx/cotx+ cotx/... (answered by Alan3354)