Let the answer be a complex number a+bi with a,b real. Then (a+bi)Č = 2i aČ+2abi+bČiČ = 2i aČ+2abi+bČ(-1) = 2i aČ+2abi-bČ=2i Equate real parts and equate imaginary parts: aČ-bČ = 0 2abi = 2i aČ = bČ ab = 1 So the only possible real solutions are (a,b) = (1,1) and (a,b) = (-1,-1) So the two square roots of 2i are 1+i and -1-i <--answers Checking: (1+i)Č = 1+2i+iČ = 1+2i+(-1) = 2i Edwin